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A new implementation of J doubling in the frequency domain frequency domain is based on the convolution. The conv
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s proposed. This modified J doubling uses novel sets of delta
functions [. . . , 11, 21, 11, 11, 21, 11, . . .] for in-phase
multiplets and [. . . , 21, 21, 21, 11, 11, 11, . . .] for an-
tiphase multiplets. The convolution process together with the
couplings found by it generates a deconvoluted multiplet that
preserves the integral and the position of the original one. If the
number of delta functions tends to infinity, the whole operation
behaves like a formal deconvolution of the multiplet, which is a
linear process. Modified J doubling allows for multistage pro-
cedures. This makes it possible to analyze 2D multiplets and to
measure coupling constants as small as 0.11 Hz with an accu-
racy of 60.03 Hz. © 2001 Academic Press

Key Words: J doubling; spin–spin coupling constant; convolu-
ion; deconvolution.

A plethora of methods have been developed to mea
spin–spin coupling constants (1) for cases where the dire
method, which consists in locating peak maxima, bre
down. This usually happens when the linewidth at h
height is around the value ofJ; passive splittings are u
derestimated due to peak overlap, while active ones
overestimated due to signal cancellation. Among th
methods, the simpler ones are those that need only one
experiment and in whichJ can be measured directly fro
he multiplet, or from 2D or 3D experiment traces. Th
rocedures can be performed in the time domain (2–5) or in

he frequency domain (6 –9). Methods in the frequenc
domain have been shown to be faster since they a
iterative use of Fourier transformations. In this paper,
focus on a modification ofJ doubling in the frequenc
domain which entails the introduction of novel sets of d
functions (d’s) that provide several advantages over the o
already reported. We test the method by comparison
known experimental results of the spectra obtained from
and 2D NMR data.

ClassicalJ doubling has been easily implemented in b
domains, time (3, 4) and frequency (8, 9). J doubling in the
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tion of two functionsf andg is defined as

h~n9! 5 E
2`

`

f~n! g~n9 2 n!dn,

wheref(n) corresponds to the original multiplet,g(n9 2 n) to
a set ofd’s which are evenly spaced, andh(n9) to the convo
luted multiplet. Since the operation allows for the use of
array ofd’s, the implementation turns out to be quite flexib

Once a digitized, isolated, and baseline-corrected mul
is extracted from a spectrum,J doubling in the frequenc
domain convolutes the signal with severald’s spaced by a tria
J, J*, which is varied within the interval where the realJ is

xpected to be. The absolute integral is obtained for eacJ*.
The graph of the absolute integral vsJ* is named the integra
function (3). The minimum of this function is the real coupli
constant, i.e.,JR. When more than a pair ofd’s is used, loca
minima are created due to subharmonics coincidences
number of which depends on the kind (in-phase or antiph
and number of couplings that are present. All these su
monics are less intense thanJR and tend to disappear when
linewidth increases. Knowledge of the exact subharmonic
sitions might be useful for proper interpretation of the inte
function, Table 1.

Diverse arrays ofd’s generate similar integral functions b
different convoluted multiplets. Figure 1 shows patterns
duced when a doublet is convoluted with sets ofd’s spaced b
a distance equal toJR. An antiphase convoluted pattern
generated when an even number ofd’s with alternating signs
used for in-phase multiplets (Fig. 1a). If an odd number od’s
with #2 symmetry is employed, an in-phase convoluted si
is produced (Fig. 1b). TheC2 axis is defined in Fig. 1. Eac
signal at the extremes is, in fact, a deconvoluted multiplet
it is called a submultiplet because it is not positioned a
center of the original spectral width (sw) and it has only
the integral of the original signal. The separation betwee
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submultiplets is equal to the number ofd’s used times the re
J, i.e., (nJR). The same result ofJ doubling in the time doma
s reached only when 2m d’s with alternating signs (wherem is
an integer) are employed for in-phase multiplets (Fig. 1a)
antiphase multiplets an array of 2m positived’s is needed (Fig

e). From the deconvoluted signals described until now,
ot easy to obtain the effectively deconvoluted multiplet,

he one that is positioned at the center of the original sig
hat preserves the original integral and the original sw o
inus theJ removed. The deconvoluted multiplet simplifi

he analysis for signals with severalJ’s and it facilitates th
spin network analysis.

A set of an even number of antiphased’s with #2 symmetry tha
ends with negatived’s (Fig. 1c) gives rise to two deconvolut
signals at the extremes with negative intensities separated by

FIG. 1. Convolution of in-phase and antiphase multiplets with differe
( JR). (a) Convolution of an in-phase multiplet with an even number ofd’s wi
an in-phase multiplet with a#2 symmetry set of an odd number ofd’s with a

n even number ofd’s with alternating signs gives rise to two submultiplets
ultiplet. (d) An62 symmetry set ofd’s creates two submultiplets at the ext

(e) Convolution of an antiphase multiplet with positived’s originates two sub
lways the number ofd’s timesJR, i.e., nJR. The same result ofJ doubling i
or

is
.,
al,
w

gap

of nJR, and a new deconvoluted multiplet at the center of
original multiplet. An equivalent pattern is obtained for antiph
multiplets when they are doubled by a set ofd’s with 62 sym-
metry (Fig. 1d). For both sw’s, the original and the convolu
one, the zero is defined at sw/2. This new signal has four a
tages. (1) It is located at the center of the original multi
independently of the sw chosen at the beginning of the pro
(2) It has the same integral as the original multiplet, as exp
for a deconvoluted NMR signal. (3) IfnJR . (sw 1 JR) and al
points out of the range6sw/2 are eliminated, the signal is p
isely the effectively deconvoluted multiplet. (4) It is a lin
rocess that allows multistage deconvolution of all the coup
resent in a multiplet. This particular modifiedJdoubling not only

determines theJR value but also makes possible a simple effec
deconvolution. If the number ofd’s tends to infinity (the signals

ets of delta functions (d’s) spaced by a distance equal to the real coupling con
lternating signs produces two submultiplets in antiphase. (b) Convolut

rnating signs generates two submultiplets in-phase. (c) A#2 symmetry set o
the extremes and an effectively deconvoluted multiplet at the center of th
es and an effectively deconvoluted multiplet at the center of the original
ltiplets in antiphase. The distance between the submultiplets at the ext

he time domain is achieved with the set ofd’s of (a) and (e).
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the extremes tend to infinity too and the signal at the c
remains unchanged), the whole operation behaves like a f
deconvolution of the multiplet.

FIG. 2. Measurement of simulated coupling constant of 1 Hz with the d
method (�) and modifiedJ doubling (■) as a function of linewidth. (a) Simulat
in-phase doublet of 1 Hz. Digital resolution employed is 0.005 Hz and 12d’s.
This number ofd’s is used for all the results shown. The direct method starts t
t 0.6 Hz of linewidth; at 1.8 Hz it is no longer possible to recognize peaks

wo maxima. ModifiedJ doubling is capable of determining the coupling cons
ntil the linewidth reaches a value of 5.0 Hz. Beyond this point, other minimah),
hich do not correspond to subharmonics, start to appear. (b) A simulated d
ith an antiphase coupling of 1.0 Hz is shown. The direct determination

onger reliable after a linewidth of 1.0 Hz. ModifiedJ doubling is able to measu
he constant within an error of 10% up to values of 1.8 Hz linewidth.

Subharmonic Coincidences

Number of
couplings

Type of
multiplet

1 In-phase J/(2p 2 1)
1 Antiphase J/q

2 In-phase J1/(2p 2 1), J2/(2p 2 1),
2 Antiphase J1/q, J2/q, uJ1 6 J2u/q

3 In-phase J1/(2p 2 1), J2/(2p 2 1),
3 Antiphase J1/q, J2/q, J3/q, uJ1 6 J2u/

Note. pis an integer larger than one and smaller than or equal to half
f deltas used.
er
al
Modified J doubling is tested with simulated signals (no

free) to measure a given coupling constant as a functio
linewidth (Fig. 2). For an in-phase doublet (Fig. 2a),JR can be

t
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e

t
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FIG. 3. (a) Determination of coupling constants with the direct me
and modifiedJ doubling as a function of linewidth for a simulated multip
with three in-phase constants of 1, 1.5, and 2.0 Hz. (b) Measureme
coupling constants with the direct method and modifiedJ doubling as
unction of linewidth. A simulated multiplet with two in-phase constants
nd 2 Hz and an antiphase constant of 1.5 Hz is used. Direct measurem

ndicated byJ 5 2.0 Hz, ■; J 5 1.5 Hz,F; J 5 1.0 Hz,�. J doubling
measurements are indicated byJ 5 2.0 Hz,F; J 5 1.5 Hz,�; J 5 1.0 Hz,
■. Small empty squares (g) and triangles (�) indicate minima which do no
orrespond to subharmonics. Large empty squares (h) and triangles (ƒ)

ndicate minima which may correspond to theJR.

esent in Integral Functions

Position of subharmonics

6 J2u/(2p 2 1)

(2p 2 1), uJ1 6 J2u/(2p 2 1), uJ1 6 J3u/(2p 2 1), uJ2 6 J3u/(2p 2 1)
J1 6 J3u/q, uJ2 6 J3u/q

number of deltas used.q is an integer larger than one and smaller than the nu
Pr

uJ1

J3/
q, u

the
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quantified to values of a linewidth/JR ratio of approximately 5
Above this value, several minima, which do not correspon
subharmonics, start to emerge. Although there is inde
minimum at the value of the coupling constant, the appear
of these other local minima complicates a straightforw
determination. For an antiphase doublet (Fig. 2b), signal
cellation reduces dramatically the limit of the measurem
When the linewidth is less than twiceJR, a certainty of mor
than 90% is obtained. It is clearly seen that, in both casJ
doubling yields better results than the direct method.

NMR experimental signals have rarely just one coup
constant. It is more realistic to test the method with multip
with three or moreJ’s. For this purpose, it is convenient
perform a multistage process. This one consists of findin
largest passiveJ, which appears as a deep minimum at h
frequencies in the integral function; this is the easiest dete
nation of a coupling because it does not have interferen
subharmonics from the other couplings. Thus, the orig
multiplet is convoluted with thisJR value. The new integr
function is obtained from the deconvoluted signal and
whole process is repeated until all passive constants have

FIG. 4. Results from a simulation showing how the root mean squares J)
f a coupling constant of 5.0 Hz is affected by the signal-to-noise-ratio. Ts J

represented by each point is computed by determining the value o
coupling constant from 200 separated spectra in which different levels
been added. Different linewidths (2.5, 5.0, 7.5, and 10 Hz) are represente
different symbols. An sw of 40.96 Hz with 4096 data points is used.

FIG. 5. Multiplets from the 300-MHz spectrum of furan-2-aldehyde w
the assignment used in the text.
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passive coupling constants of 1.0, 1.5, and 2.0 Hz. Onc
linewidth is larger than 1.2 Hz, it is possible to see only
peak instead of eight. However, modifiedJ doubling can stil
measure the three constants up to a linewidth of 4.6 Hz. A
value, several minima, which do not correspond to subhar
ics, start to emerge near the smallestJ. Even though a min
mum of 1 Hz is still present at a linewidth over 5.4 Hz, it is
longer possible to objectively verify that it is a real coup

he
ve
ith

FIG. 6. Multistage deconvolution process of the HC multiplet of furan-2
ldehyde in [2H6]DMSO. Three coupling constants are determinated:JBC 5

3.60 Hz,JAC 5 1.70 Hz, andJCX 5 0.16 Hz. (a) The HC multiplet. (b) Integra
unction of HC: (I) JBC 1 JAC 5 5.30 Hz, (II) JBC, (III) J1 2 J2 5 1.90 Hz
IV) JAC, (V) JBC/3 5 1.20 Hz, (VI)JBC/5 5 0.72 Hz, and (VII)JAC/3 5 0.57
z and JBC/7 5 0.51 Hz. (c) Deconvoluted multiplet after removing
plitting JBC and reducing the sw by 3.60 Hz. (d) Integral function of

multiplet in (c): (I) JAC, (II) JAC/3 5 0.57 Hz, (III) JAC/5 5 0.34 Hz, and (IV
JAC/7 5 0.24 Hz. (e) Deconvoluted multiplet after removing the splittingJAC

and reduction of the sw; no other splitting is clearly observed. (f) The int
function of the multiplet in (e) shows only a minimum atJCX. (g) Deconvolute
multiplet after removing the splittingJCX and sw reduction. (h) Integr
unction of the multiplet in (g); one can hardly observe a minimum at 0.08
i) Convoluted graph of signal (g) with 0.08 Hz. Digital resolution of
pectra is 0.005 Hz. The reference signal of TMS has a linewidth of 0.3
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0.32
0.27

0.16
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constant. The constant of 2.0 Hz can be measured wi
ambiguities until 6.0 Hz, five times the limit of the dire
method.

A second test uses a multiplet with two passive constan
1.0 and 2.0 Hz and an active one of 1.5 Hz (Fig. 3b). Abo
linewidth of 0.8 Hz, estimation ofJ’s by location of pea
maxima and minima is random and very difficult to analy
Moreover, it is no longer possible to measure any rea
coupling after a linewidth of 1.5 Hz; the only measured va
is 4.2 Hz. ModifiedJ doubling is capable of determining t

ntiphase coupling with an error of less than 10% up to va
f 3.0 Hz in the linewidth. Generally, the method limits

n-phaseJ’s in a multiplet are found to be slightly smaller th
he ones for a doublet; they go up to 4.6 Hz linewidth forJ 5
1.0 Hz and 6.0 Hz linewidth forJ 5 2.0 Hz. For antiphas
multiplets, modifiedJ doubling measurements are better
termined if passive constants are first found out and remo
as described above. The active splittings are measure
removed at the end.

These results are expected to vary as noise is introduce
study how noise affects the determination of a in-phase
tiplet with 5.0 Hz, as proposed by Stonehouse and Keele5).
A noiseless simulated signal is obtained and a predeterm
noise level is added to it. Afterward, this signal–noise func
is processed by modifiedJ doubling to measure the value of
coupling constant between 3.00 and 7.00 Hz. This proced
then repeated 200 times with different but similar noise le
The root-mean-square deviation (s J) of the determined value
from the true value (5.00 Hz) is plotted against the mean v
of the noise levels for four different linewidths in Fig. 4. T
s J increases as the signal-to-noise ratio (SNR) decrease
as the linewidth increases. Surprisingly, the deviations o
results remain very similar when SNR. 40. When the SNR.

0 for a linewidth of 10 Hz, it is possible to measure
oupling constant within an accuracy larger than 90%.
ame result is obtained for SNR. 3 and linewidth, 6. Active
plittings have a similar behavior.
Small long-range couplings of furan-2-aldehyde (Fig. 5)

hosen to test the method experimentally. A multistage de
olution process (Fig. 6) is shown for the HC multiplet in

[ 2H6]DMSO (Fig. 6a). Once the modifiedJ doubling processe
the signal, the integral function of HC is obtained (Fig. 6b). A

Coupling Constants fo

Solvent

JAB JAC JB

(A) (B) (R) (A) (C) (R) (B) (C

[2H6]Benzene 0.78 0.78 0.78 1.70 1.70 1.69 3.59
[2H]Chloroform 0.78 0.77 0.79 1.70 1.70 1.69 3.60
[2H6]DMSO 0.77 0.79 0.80 1.70 1.70 1.69 3.60

Note.(A) Measured in multiplet A; (B) measured in multiplet B; (C) m
ut
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minimum appears at 3.60 Hz, which corresponds to the la
coupling constant. After this, the multiplet is deconvolu
with this J value (Fig. 6c). ModifiedJ doubling is applied t
the deconvolved multiplet, producing a simplified integ
function (Fig. 6d) which clearly shows the presence of 1.70
coupling. Further deconvolution with this value (Fig. 6e) g
erates a signal that can be taken for a singlet. Neverthe
third integral function shows that it is indeed a doublet sin
shows a minimum at 0.16 Hz (Fig. 6f). This corresponds to
smallest coupling constant known. Figure 6g reveals a si
with imperfections due to magnetic field inhomogeneties
small artifacts introduced by the filtering. A further sta
vaguely suggests the presence of a minimum at 0.08 Hz
6h). Such a broad minimum (Fig. 6h) cannot be taken a
indicator of another coupling constant. If we doubt about w
to stop the process, we can go further deconvolutioning a
with 0.08 Hz. The new signal will contain wiggle artifacts
the edges with a strange lineshape (Fig. 6i). The new lines
is not preserved as in the previous processes. A broad
mum in the integral function, wiggle artifacts at the edge
the deconvoluted signal, and strange lineshapes are indi
to stop the deconvolution process one step before (Fig. 6
this manner, problems due to poor SNR and problem
measuring more coupling constants than the ones prese
avoided. It is convenient to decrease the original sw byJ, as
expected for a formal deconvolution process, since eac
convolution step will increase imperfections and noise pre
in the extracted signal.

Solutions of furan-2-aldehyde in [2H6]benzene, [2H]chloro-
form, and [2H6]DMSO are examined. Complete results
shown in Table 2. The coupling constants are measured in
signals. The firstJMN in a column represents the value obtai
from multipletM, and the second one the value obtained f

ultiplet N. It is not possible to measure the smallest coup
constant reported, which corresponds to 0.08 Hz
[2H6]DMSO. All the other results, including theJBX in
[ 2H]chloroform and [2H6]benzene (0.11 and 0.12 Hz), are
complete agreement with previously reported data (10, 11)
within an error of60.03 Hz.

Automatic analysis of 2D NMR signals is easily imp
mented by taking each row or column and performing
process as it is for a 1D signal. The integral function will be

uran-2-aldehyde (Hz)

JAX JBX JCX

(R) (A) (X) (R) (B) (X) (R) (C) (X) (R)

8 3.56 0.65 0.65 0.63 0.12 0.13 0.13 0.31 0.32
0 3.58 0.70 0.70 0.68 0.11 0.12 0.11 0.27 0.27
0 3.60 0.84 0.83 0.84 — — 0.08 0.16 0.16

ured in multiplet C; (X) measured in multiplet X; (R) from Ref. (12).
r F

C

)

3.5
3.6
3.6

eas
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sum of all the individual integral functions obtained for e
row or column. Figure 7 shows the deconvolution proces
2DQF-COSY cross signal for HB and HC (Fig. 7a). First, two
successive deconvolutions are performed, removingJAC 5
1.70 Hz in F 1 and JAB 5 0.78 Hz in F 2 (Fig. 7b). Active
splitting, JBC 5 3.60 Hz, is then deconvoluted inF 2 (Fig. 7c)
and in a second stage inF 1 (Fig. 7d). The same value for t
coupling constantJBC is measured in both dimensions. So
artifacts show up as a consequence of 2D signal imperfec
in the original multiplet, border effects and noise due to
filtering process.

In order to be implemented, modifiedJ doubling does no
equire previous knowledge of the linewidth or the numbe
oupling constants present in the multiplet as other met
o. Nevertheless, a little experience with integral funct

FIG. 7. Progressive deconvolution of splittings in a COSY cross
(15 3 15 Hz and 0.165 Hz/point) between HB and HC in furan-2-aldehyde. (a

he unprocessed cross peak. (b) After removal of two passive splittings:JAC 5
1.70 Hz in one dimension andJAC 5 0.78 Hz in the other one. (c) Aft
emoval of the active splittingJAC 5 3.60 Hz in theF 2 dimension. (d) Afte

removal of the active splittingsJAC 5 3.60 Hz in theF 1 dimension.
or

ns
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f
ds
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.e., complex multiplets from natural products or organic m
cules. ModifiedJ doubling makes possible the observa
nd the measurement of small coupling constants hidden

inewidth once a good experimental signal is provided. Th
ore, the more complex the signal the more useful the me
odified J doubling also simplifies multiplets by independ

uccessive deconvolutions from 1D and/or 2D experimen
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